Heutzutage ist Extremwerttheorie ein Thema, das in der Gesellschaft weiterhin großes Interesse weckt. Ob aufgrund seiner heutigen Relevanz oder seiner Auswirkungen auf die Geschichte, Extremwerttheorie ist zu einem Bezugspunkt für das Verständnis verschiedener Aspekte des täglichen Lebens geworden. In diesem Artikel werden wir die verschiedenen Dimensionen von Extremwerttheorie im Detail untersuchen, von seinen Ursprüngen bis zu seinem Einfluss auf die heutige Gesellschaft. Durch eine tiefgreifende und detaillierte Analyse werden wir herausfinden, wie Extremwerttheorie die Art und Weise geprägt hat, wie wir mit der Welt um uns herum interagieren, und welche Rolle sie bei der Gestaltung unserer Zukunft spielt.
Die Extremwerttheorie (englisch extreme value theory) ist ein Teilgebiet der mathematischen Statistik, das sich mit maximalen und minimalen Werten von Stichproben beschäftigt.
Ein zentrales Resultat ist die Tatsache, dass für das Maximum (und das Minimum) einer Stichprobe (egal welcher Verteilung) nur drei Typen von Grenzverteilungen möglich sind, welche sich in einer so genannten verallgemeinerten Extremwertverteilung zusammenfassen lassen. Max-stabile Prozesse erweitern die mehrdimensionale Extremwerttheorie hin zum unendlichdimensionalen Fall.
Es seien unabhängig und identisch verteilte Zufallsvariablen mit Werten in den reellen Zahlen und ihr Maximum. Ferner bezeichne die Verteilungsfunktion von , und sei eine nicht-ausgeartete Verteilungsfunktion – also keine Funktion, die nur die Werte Null oder Eins annehmen kann. Falls dann Folgen existieren, so dass die Konvergenz gilt, so kann nur eine der folgenden Verteilungen sein (Satz von Fisher-Tippett-Gnedenko), je nachdem, ob die Ausläufer der Verteilung exponentiell abfallen, polynomiell abfallen oder an einer Stelle den Wert Null erreichen:
Diese drei Verteilungen können auch zu einer einzigen Klasse (Jenkinson-von-Mises-Darstellung) parametrisiert werden. Die (oder eine) verallgemeinerte Verteilung heißt Extremwertverteilung. Als Parameter werden oft und verwendet, wobei eine Typ-III-Verteilung beschreibt und eine Typ-II-Verteilung.
Sie findet unter anderem Anwendung in der Finanzmathematik und Versicherungsmathematik. Die Theorie wurde u. a. angewendet für die Untersuchung der Rekordentwicklung in der Leichtathletik[1] und von Klimarekorden.[2]
Typische Fragestellungen könnten unter anderem sein:
Für solche sehr seltene Ereignisse, also z. B. sehr hohe wirtschaftliche Gewinne oder Verluste, sind in der Wahrscheinlichkeitstheorie der extremen Ereignisse unter Umständen nicht mehr die gewohnten Normalverteilungen (oder Überlagerungen davon) charakteristisch, die sich wie Gaußfunktionen verhalten, also wie „Standard-Glockenkurven“ der Breite , genauer: wie , die also im Randbereich rascher als exponentiell abfallen. Stattdessen dominieren Verteilungsfunktionen, die im Zentralbereich wie Gaußfunktionen aussehen, aber im Randbereich nur algebraisch klein werden, , mit einem charakteristischen „fat tail“-Exponenten, der in der physikalischen Literatur mit bezeichnet wird und bestimmte „universelle“ Werte annehmen kann.[3]