In diesem Artikel werden wir das Thema Gravitationswaage aus verschiedenen Perspektiven untersuchen und seine historischen, kulturellen, sozialen und emotionalen Implikationen abdecken. Gravitationswaage ist heute ein Thema von großer Relevanz, das in verschiedenen Bereichen Interesse und Debatten geweckt hat. Im Laufe des Artikels werden wir die verschiedenen Aspekte von Gravitationswaage analysieren und uns mit seiner Bedeutung, seinen Auswirkungen und möglichen Lösungen befassen. Durch einen multidisziplinären Ansatz möchten wir einen umfassenden Überblick bieten, der es dem Leser ermöglicht, die Komplexität und Bedeutung von Gravitationswaage im zeitgenössischen Kontext zu verstehen.
Eine Gravitationswaage, auch Cavendish-Experiment, ist ein Messinstrument, das die Gravitationskonstante aus der gegenseitigen Anziehung zweier Probemassen bestimmt. Sie gibt also ein Maß für die Stärke der Gravitation an.
1798 benutzte Henry Cavendish eine solche Apparatur, um zum ersten Mal die Dichte der Erde bestimmen zu können. Obwohl sich Cavendish selbst nicht für die Gravitationskonstante interessierte, gelang es durch sein Experiment, ihren Wert schon annähernd genau zu errechnen.[1]
Es handelt sich um eine Drehwaage, wie sie auch in der angewandten Geophysik verwendet wird. „Drehwaage“ bedeutet, dass der Betrag des Winkels, um den ein Draht aus seiner Ruheform verdreht wird, Auskunft über das wirkende Drehmoment gibt. Hieraus lässt sich die zwischen den Testmassen wirkende Kraft berechnen.
Konkret: In der Mitte hängt ein Draht, an dem waagerecht ein Stab angebracht ist. An diesem sind in der Mitte ein Spiegel (parallel zum Draht) und zwei kleine Massen an den Enden befestigt. Davor steht eine Lichtquelle, die einen relativ schmalen Lichtstrahl (heutzutage meist ein Laser) emittiert. Dieser ist auf den Draht gerichtet und wird vom schmalen Spiegel an einen entfernten Schirm reflektiert.
Findet nun eine Auslenkung der Massen aus der Ruhelage statt, dann kann man dies durch eine Verschiebung des abgebildeten Lichtpunktes feststellen.
Vor der Durchführung
Durchführung:
Die nachfolgende Berechnung gilt unter der Voraussetzung kleiner Abstände r zwischen großer und kleiner Massen. Nur dann ergibt sich aus der Gravitation zwischen diesen beiden Kugeln eine Kraft, die annähernd senkrecht zur Stange wirkt (an der die kleinen Massen aufgehängt sind). Dann ergibt sich für das Drehmoment .
Drehmoment: Die Anziehung der Massen bewirkt als Kraft ein Drehmoment auf den Stab. Genaugenommen gibt es auch ein entgegengesetztes Moment , welches durch Anziehung der kleinen Kugeln durch die weiter entfernt liegenden großen Kugeln zustande kommt. Der Verdrehung durch wirkt die Festigkeit des Drahtes entgegen, je größer der Drehwinkel θ wird, desto mehr Widerstand gibt es. Diese Gegenwirkung ist näherungsweise proportional zum Winkel , den Proportionalitätsfaktor nennt man Direktionsmoment.
Schwingungsfrequenz: Im Gültigkeitsbereich der linearen Näherung sind Drehschwingungen harmonisch und ihre Kreisfrequenz ist nur abhängig vom Direktionsmoment und dem Trägheitsmoment . Letzteres berechnet sich hier einfach als . Aus folgt für die Schwingungsdauer . Also ist .
Auslenkung: Wie bei allen Spiegeln ist der Drehwinkel der Abbildung doppelt so groß wie der Drehwinkel des Spiegels. Wenn man einen leicht gewölbten Schirm annimmt, ist also der Winkel, um den der Draht gedreht wurde .
Gleichgewicht: Im Gleichgewicht zwischen Anziehung und rücktreibender Kraft muss gelten . Also . Jetzt ist die Gravitationskonstante durch bloßes Umformen errechenbar,
Ist der Abstand zum Schirm gleich der Hebellänge, , so ergibt sich